Supporting Information for the paper:

High Mechanical Performance Composite Conductor: Multi-walled Carbon Nanotube Sheets/Bismaleimide Nanocomposites

By Qunfeng Cheng, Jianwen Bao, JinGyu Park, Zhiyong Liang*, Chuck Zhang and Ben Wang
Figures S1 and S2 illustrate mechanical stretching experiment and nanotube sheet sample deformation. Figure S3 shows the substantial alignment enhancement of nanotube sheets of different stretch ratios. Figures S4-S7 are the actual stress-strain curves of nanotube sheet/BMI composites.

Figure S1: Process for stretching a randomly dispersed MWNT strip using a Shimadzu machine (AGS-J, Shimadzu Scientific Inc., Japan).

Figure S2: Schematic illustration of randomly dispersed CNT sheet before and after mechanical stretching.
Figure S3: SEM images of randomly dispersed CNT sheet after mechanical stretching with different ratios: (A) 30% stretch ratio, (B) 35% stretch ratio and (C) 40% stretch ratio.
Figure S4: Typical tensile stress-strain curves of the randomly dispersed MWNT sheets/BMI composite.

Figure S5: Typical tensile stress-strain curves of the 30% stretched MWNT sheets/BMI composite.
Figure S6: Typical tensile stress-strain curves of the 35% stretched MWNT sheets/BMI composite.

Figure S7: Typical tensile stress-strain curves of the 40% stretched MWNT sheets/BMI composite.